ON THE HYDRODYNAMIC PRESSURE ON A DAM CAUSED BY ITS APERIODIC OR IMPULSIVE VIBRATIONS AND VERTICAL VIBRATIONS OF THE EARTH SURFACE

 (O GIDRODINAMICBESKOM DAVLENII NA PLOTINU, VYZVANNOM EE

 (O GIDRODINAMICBESKOM DAVLENII NA PLOTINU, VYZVANNOM EE APERIOBICHESKIMI ILI IMPUL'SYVNYMI KOLEBANIIAMI I APERIOBICHESKIMI ILI IMPUL'SYVNYMI KOLEBANIIAMI I VERTIKAL' NYMI KOLEBANIIAMI ZEMNOI POVERKHNOSTI)

 VERTIKAL' NYMI KOLEBANIIAMI ZEMNOI POVERKHNOSTI)}

```
PMM Vol.25, No.4, 1961, pp. 716-728
            CHEN' CHZHEN' - CHEN
                        (Moscow)
(Received September 17, 1960)
```

This paper is concerned with the problem of the distribution along a dam of hydrodynamic pressure caused by aperiodic or impulsive vibrations of the dam, and vertical vibrations of the ground below the liquid. The results show that the vertical vibrations of the earth surface have a significant influence upon the loading of the dam during a strong as well as during a destructive earthquake. Formulas for the distribution of the dynamic fluid pressure along the dam are derived.

The problem of the dynamic fluid pressure on a dam, caused by its periodic vibrations. for instance $V=V_{0} \cos \omega t$, was studied in [1-4]. where V_{0} was the velocity amplitude of the vibrating dam. The problem of surface waves on a fluid which appear due to a periodic surface, or internal, pressure system was studied in [5-7].

1. We shall analyze the problem of the dynamic pressure of the fluid on the dam, caused by vibrations of the earth surface with a velocity $V(t)$, which lies in the plane x, y and is inclined at an angle $\mathcal{\forall}$ to the horizon.

Assume that in rectangular coordinates x, y, z the dam and the earth surface are located at $x=U_{1}(t)$ and $y=U_{2}(t)-h$, respectively. The part of the space that is bounded by $x \geqslant U_{1}(t), U_{2}(t)-h \leqslant y \leqslant U_{2}(t)$, and $-\infty \leqslant z \leqslant \infty$ is filled with fluid.

Let us assume that the surface of the liquid is initially at rest. When the velocity potential of the fluid is denoted by $\phi(x, y, t)$ the initial and boundary conditions of the problem become

$$
\begin{array}{lll}
\frac{\partial \Phi(x, 0,0)}{\partial t}=0, & \frac{\partial \Phi(0, y, 0)}{\partial x}=V_{1}(0), & \frac{\partial \varphi(x,-h, 0)}{\partial y}=V_{2}(0) \\
\frac{\partial \varphi}{\partial x}=V_{1}(t) & \text { at } x=U_{1}(t)=\int_{0}^{t} V_{1}(\tau) d \tau & \left(V_{1}(t)=V(t) \cos \vartheta\right) \\
\frac{\partial \varphi}{\partial y}=V_{2}(t) \quad \text { at } y=U_{2}(t)-h \\
\frac{\partial^{2} \varphi}{\partial t^{2}}-g \frac{\partial \varphi}{\partial y}=0 & \text { at } y=U_{2}(t)=\int_{0}^{t} V_{2}(\tau) d \tau & \left(V_{2}(t)=V(t) \sin \vartheta\right) \tag{1.4}
\end{array}
$$

The fluid velocity potential, which has to satisfy the Laplace equation $\Delta \phi=0$, can be written as follows:

$$
\begin{align*}
\varphi(x, y, t) & =\int_{0}^{\infty}[B(\omega, k) \cosh k(Y+h)+D(\omega, k) \sinh k Y] \cos k X \cos \omega t d \omega d k- \\
& +\int_{0}^{\infty} \int_{0}^{\infty} A(\omega, \alpha) \sin \alpha Y e^{-\alpha x} \cos \omega t d \omega d \alpha \quad\binom{X=x-U_{1}(t)}{Y=y-U_{2}(t)} \tag{1.5}
\end{align*}
$$

Here $A(\omega, a), B(\omega, k)$, and $D(\omega, k)$ are arbitrary functions, and the function $\phi(x, y, t)$ is determined so that

$$
\varphi=\varphi(x, y, t) \quad \text { at } x \geqslant U_{1}(t)(-h \leqslant Y \leqslant 0), \quad \varphi=0 \quad \text { at } x<U_{1}(t)
$$

The boundary condition (1.2) will be satisfied if we choose

$$
\begin{equation*}
-\int_{0}^{\infty} \alpha A(\omega, \alpha) \sin \alpha Y \cos \omega t d \omega d \alpha=V_{1}(t) \tag{1.6}
\end{equation*}
$$

Introduce a new variable $\zeta=Y$ and rewrite (1.6) in the form
where

$$
\begin{equation*}
-\int_{0}^{\infty} \int_{0} \alpha A(\omega, \alpha) \sin \alpha \zeta \cos \omega t d \omega d \alpha=V_{1}(t) f(\zeta) \tag{1.7}
\end{equation*}
$$

$$
f(\zeta)=1 \quad \text { at }-h \leqslant \zeta \leqslant 0, \quad f(\zeta)=0 \quad \text { at }-h>\zeta>0
$$

Using a Fourier expansion we obtain from the integral equation (1.7)

$$
\begin{equation*}
A(\omega, \alpha)=\frac{4(1-\cos \alpha h)}{\pi^{2} \alpha^{2}} G_{1}(\omega) \quad\left(G_{1}(\omega)=\int_{0}^{\infty} V_{1}(\tau) \cos \omega \tau d \tau\right) \tag{1.8}
\end{equation*}
$$

Because of the initial condition (1.3) we have

$$
\begin{equation*}
\int^{\infty}\left[\int_{0}^{\infty} D(\omega, k) k \cosh k h \cos k X d k+\int_{0}^{\infty} A(\omega, \alpha) \cos \alpha h e^{-\alpha X_{\alpha}} \alpha d \alpha\right] \cos \omega t d \omega=V_{2}(t) \tag{1.9}
\end{equation*}
$$

From this

$$
\begin{equation*}
D(\omega, k)=-\frac{2}{\pi} \int_{0}^{\infty} \frac{A(\omega, \alpha) \alpha^{2} \cos \alpha h}{k\left(\alpha^{2}+k^{2}\right) \cosh k h} d \alpha+\frac{2}{\pi} \frac{C_{2}(\omega) \delta(k)}{k \cosh k h} \tag{1.10}
\end{equation*}
$$

Here

$$
\delta(k)=\frac{2}{\pi} \lim _{l \rightarrow \infty} \frac{\sin k l}{k} \quad\left(\begin{array}{l}
\text { Dirac } \\
\text { delta } \\
\text { function }
\end{array}\right), \quad G_{2}(\omega)=\int_{0}^{\infty} V_{2}(\tau) \cos \omega \tau d \tau
$$

From boundary condition (1.4) we determine the unknown function

$$
\begin{equation*}
B(\omega, k)=-\frac{\lg D(\omega, k)}{k g \sinh k h-\omega^{2} \cosh k h}-\frac{2 g}{\pi} \int_{0}^{\infty} \frac{A(\omega, \alpha) \alpha^{2} d \alpha}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh k h-\omega^{2} \cosh k h\right)} \tag{1.11}
\end{equation*}
$$

After substitution of Expressions (1.8), (1.10), and (1.11) into (1.5), we obtain the sought-for velocity potential $\phi(x, y, t)$.

1) In order to find the dynamic fluid pressure on the dam caused by its aperiodic vibrations we shall assume that

$$
\begin{equation*}
V(t)=V_{0} e^{-\lambda t} \quad(\lambda=\xi+i \eta) \tag{1.12}
\end{equation*}
$$

where V_{0}, ξ and η are real constants. Here the velocities of the vibrating $\operatorname{dam} V_{1}(t)$ and the earth surface below the fluid $V_{2}(t)$ will be respectively

$$
\begin{gather*}
V_{1}(t)=V_{1} e^{-\lambda t}, \quad V_{2}(t)=V_{2} e^{-\lambda l} \quad\left(V_{1}=V_{0} \cos \vartheta, \quad V_{2}=V_{0} \sin \vartheta\right) \tag{1.13}\\
L^{t}(t)=\int_{0}^{t} V(\tau) d \tau=U_{0}\left(1-e^{-\lambda t}\right) \quad\left(U_{0}=\frac{V_{0}}{\lambda}\right)
\end{gather*}
$$

From this, the displacement of the dam $V_{1}(t)$ and the earth surface $V_{2}(t)$ will be

$$
\begin{equation*}
U_{1}(t)=U_{1}\left(1-e^{-\lambda t}\right), \quad U_{2}(t)=U_{2}\left(1-e^{-\lambda t}\right) \quad\left(U_{1}=U_{0} \cos \vartheta, \quad U_{2}=U_{0} \sin \theta\right) \tag{1.14}
\end{equation*}
$$

We find from (1.12), taking into account (1.8) and (1.10), that

$$
\begin{equation*}
G_{1}(\omega)=\frac{\lambda V_{1}}{\lambda^{2}+\omega^{2}}, \quad G_{2}(\omega)=\frac{\lambda V_{2}}{\lambda^{2}+\omega^{2}} \tag{1.15}
\end{equation*}
$$

Let us introduce the following notation:

$$
\begin{gather*}
\Psi(\alpha, k, \omega)=(1-\cos \alpha h) G_{1}(\omega) /\left(\alpha^{2}+k^{2}\right)\left(k g_{1} \sinh k h-\omega^{2} \cosh k h\right) \\
S_{1}=\iint_{0}^{\infty} \int_{0}^{\cos \alpha h} \frac{\cosh k h}{} \Psi(\alpha, k, \omega) \cosh k(Y+h) \omega \sin \omega t d \alpha d k d \omega \\
S_{2}=\iint_{0}^{\infty} \int_{0}^{\infty} \Psi(\alpha, k, \omega) \cosh k(Y+h) \omega \sin \omega t d \alpha d k d \omega \tag{1.16}\\
S_{3}=\iint_{0}^{\infty} \int_{0}^{\cos \alpha h} \operatorname{coshh} k(\alpha, k, \omega) k \sinh k(Y+h) \cos \omega t d \alpha d k d \omega \\
S_{4}=\int_{0}^{\infty} \int_{0}^{\infty} \Psi(\alpha, k, \omega) k \sinh k(Y+h) \cos \omega t d \alpha d k d \omega
\end{gather*}
$$

When we differentiate $\phi(x, y, t)$ with respect to t for $t>0, x=$ $U_{1}(t)$, we have

$$
\begin{gathered}
\frac{\partial \Phi}{\partial t}=\frac{8}{\pi^{3}} \iint_{0}^{\infty} \int_{0} \frac{(1-\cos \alpha h) \cos \alpha h}{k\left(\alpha^{2}+k^{2}\right) \cosh k h} G_{1}(\omega)[\omega \sin \omega t \sinh k Y+ \\
\left.+V_{2} e^{-\lambda t} k \cosh k Y \cos \omega t\right] d \alpha d k d \omega-\frac{8 g}{\pi^{3}}\left[S_{1}-S_{2}+V_{2} e^{-\lambda t}\left(S_{3}-S_{4}\right)\right]+ \\
\quad+U_{2} g\left(e^{-\lambda t}-1\right)-\lambda V_{2} Y e^{-\lambda t}-V_{2}^{2} e^{-2 \lambda t}- \\
-\frac{4}{\pi^{2}} \iint_{0}^{\infty} \frac{(1-\cos \alpha h)}{\alpha^{2}} G_{1}(\omega)[\omega \sin \omega t \sin \alpha Y+ \\
\\
\left.\quad+\alpha\left(V_{2} \cos \alpha Y-V_{1} \sin \alpha Y\right) e^{-\lambda t} \cos \omega t\right] d \alpha d \omega
\end{gathered}
$$

First let us study S_{1}. Integration with respect to ω yields

$$
\begin{equation*}
T=\lambda V_{1} \int_{0}^{\infty} \frac{\omega \sin \omega t d \omega}{\left(\omega^{2}+\lambda^{2}\right)\left(k g \sinh k h-\omega^{2} \cosh k h\right)}=\frac{\pi \lambda}{2} V_{1} \frac{e^{-\lambda t}-\cos \sqrt{k g \tanh h h} t}{k g \sinh k h+\lambda^{2} \cosh k h} \tag{1.18}
\end{equation*}
$$

Introduce the notation $M_{1}=\sqrt{ }[\mathrm{kg} \tanh (k h)]$. The substitution of (1.18) into the expression for S_{1} in (1.16) yields

$$
\begin{equation*}
S_{1}=\frac{\pi \lambda}{2} V_{1}\left(R_{1} e^{-\lambda t}-R_{2}\right) \tag{1.19}
\end{equation*}
$$

where

$$
\begin{gathered}
R_{1}=\int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h \cosh k(Y+h) d \alpha d k}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh h h+\lambda^{2} \cosh k h\right) \cosh k h} \\
R_{2}=\int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h \cosh k(Y+h) \cos M_{1} t}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh h h+\lambda^{2} \cosh k h\right) \cosh k h} d \alpha d k
\end{gathered}
$$

Since the integrals (1.19) converge uniformly with respect to a and k, we may change the order of integration, i.e. we shall integrate at first with respect to k. Rewrite R_{1} in the following form:

$$
\begin{gathered}
R_{1}=\int_{0}^{\infty}(1-\cos \alpha h) \cos \alpha h d \alpha R_{1}^{*} \\
\left(R_{1} *=\int_{0}^{\infty} \frac{\cosh k(Y+h) d k}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh k h+\lambda^{2} \cosh h h\right) \cosh k h}\right)
\end{gathered}
$$

$R_{1}{ }^{*}$ will be calculated by the use of the theory of residues. In the complex plane we have two roots $\pm i a$ and an infinite number of roots $\pm i m \pi / 2 h$, where $m=1,3,5, \ldots$, for the equations $a^{2}+$ $k^{2}=0$ and $\cosh (k h)=0$, respectively. In order to find the roots of the transcendental equation $k g \sinh (k h)+\lambda^{2}$ $\cosh (k h)=0$ we shall introduce a new variable $k h=\gamma$ and transform this equa-

Fig. 1. tion to

$$
\begin{equation*}
\gamma \operatorname{th} \gamma=\mu \quad\left(\mu=-\lambda^{2} h / g=\left(\eta^{2}-\xi^{2}-i 2 \eta \xi\right) h / g\right) \tag{1.21}
\end{equation*}
$$

Using the conformal transformation

$$
\begin{equation*}
w=f\left(z^{\prime}\right)=z^{\prime} \tanh z^{\prime} \quad\left(w=u+i v, z^{\prime}=x^{\prime}+i y^{\prime}\right) \tag{1.22}
\end{equation*}
$$

we have

$$
\begin{equation*}
u=\frac{x^{\prime} \sinh 2 x^{\prime}-y^{\prime} \sin 2 y^{\prime}}{\cos 2 y^{\prime}+\cosh 2 x^{\prime}}, \quad v=\frac{y^{\prime} \sinh 2 x^{\prime}+x^{\prime} \sin 2 y^{\prime}}{\cos 2 y^{\prime}+\cosh 2 x^{\prime}} \tag{1.23}
\end{equation*}
$$

From Formula (1.20) and Figs. 1 and 2, it can be seen that the mapping (1.22) transforms the parallel lines $\pm n \pi / 4$, where $n=1, \ldots, 8$, in the z^{\prime}-plane into curves in the w-plane. With the aid of these figures, with a known μ, we shall find the roots of Equation (1.21) in the z^{\prime} plane, which corresponds to point μ in the w-plane. Besides, we obtain by means of successive approximations from Formulas (1.21) and (1.23) the unknown γ with the necessary degree of accuracy. We see from Figs. 1 and

2 and Formula (1.23) that Equation (1.21) has the following roots: when μ is a complex constant there

Fig. 2. are several complex roots (two, four, etc.); for $\mu<0$ there is an infinite number of imaginary roots; for $\mu>0$ there are two real roots and an infinite number of imaginary roots; when μ is an imaginary constant there are several complex roots. The equality $\xi=\eta$ corresponds to the last case.

As an example, let us assume that $\xi<\eta$, and that point μ is located as shown in Fig. 1.

After a number of integrations we find

$$
\begin{align*}
R_{1}=- & i \frac{\pi^{2} h}{2} \frac{(1-\cosh \gamma)[\gamma(Y+h) / h]}{g\left[\gamma^{2}-(1+\mu) \mu \cosh ^{2} \gamma\right.} e^{-\gamma}+\frac{\pi}{2} \int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha(Y+h) d \alpha}{\alpha\left(\lambda^{2} \cos \alpha h-\alpha g \sin \alpha h\right)}+ \\
& f \pi \int_{0}^{\infty} \sum_{m=1,3}^{\infty} \frac{\cos C(Y+h) \cos \alpha h}{g C\left(C^{2}-\alpha^{2}\right) h}(1-\cos \alpha h) d \alpha \quad\binom{\gamma=p-i q}{C=m \pi / 2 h} \tag{1.24}
\end{align*}
$$

Here p and q are real constants.
Returning to the computation of R_{2}, we analyze the integral

Fig. 3.

$$
\begin{equation*}
R_{2}{ }^{*}=\int_{0}^{\infty} \frac{\cosh k(Y+h) \cos M_{1} t d k}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh k h+\lambda^{2} \cosh / h\right) \cos h k h} \tag{1.25}
\end{equation*}
$$

For the evaluation of this integral, we choose three auxiliary functions

$$
\begin{align*}
& F_{1}\left(z^{\prime}\right)=\frac{\cosh z^{\prime}(Y+h) \exp \left[i M_{1}\left(z^{\prime}\right) t\right]}{\left(\alpha^{2}+z^{2}\right)\left(z^{\prime} g \sinh z^{\prime} h+\lambda^{2} \cosh z^{\prime} h\right) \cosh z^{\prime} h} \\
& F_{2}\left(z^{\prime}\right)=\frac{\cos z^{\prime}(Y+h) \exp \left[-M_{2}\left(z^{\prime}\right) t\right]}{\left(\alpha^{2}-z^{\prime 2}\right)\left(\lambda^{2} \cos z^{\prime} h-z^{\prime} g \sin z h\right) \cos z^{\prime} h} \tag{1.26}\\
& F_{3}\left(z^{\prime}\right)=\frac{\cos z^{\prime}(Y+h) \exp \left[M_{2}\left(z^{\prime}\right) t\right]}{\left(\alpha^{2}-z^{2}\right)\left(\lambda^{2} \cos z^{\prime} h-z^{\prime} g \sin z^{\prime} h\right) \cos z^{\prime} h}
\end{align*}
$$

and the corresponding contours, shown in Fig. 3, where contour (1) lies in plane 1 (Fig. 2) and contours (2) and (3) lie in plane 1^{\prime}, which can be obtained from plane 1 by a mapping of (x^{\prime}, y^{\prime}) onto ($-y^{\prime}, x^{\prime}$) and a 90° clockwise rotation.

Here we have two roots $\pm i y$ in the transformed plane corresponding to the equation $\lambda^{2} \cos z^{\prime} h-z^{\prime} g \sin z^{\prime} h=0$.

Before we go into the contour integration we shall study the multivalued functions

$$
\begin{equation*}
M_{1}\left(z^{\prime}\right)=\sqrt{z^{\prime} g \tanh z^{\prime} h}, \quad M_{2}\left(z^{\prime}\right)=\sqrt{z^{\prime} g \tan z^{\prime} h} \tag{1.27}
\end{equation*}
$$

By expanding $\tanh \left(z^{\prime} h\right)$ and $\tan \left(z^{\prime} h\right)$ in terms of infinite products

$$
\begin{align*}
& { }^{\tanh } \chi=\chi \prod_{n=1}^{\infty}\left(1+\frac{\chi^{2}}{n^{2} \pi^{2}}\right) / \prod_{n=0}^{\infty}\left(1+\frac{4 \chi^{2}}{(2 n+1)^{2} \pi^{2}}\right) \tag{1.28}\\
& { }^{\tan } \chi=\chi \prod_{n=1}^{\infty}\left(1-\frac{\chi^{2}}{n^{2} \pi^{2}}\right) / \prod_{n=0}^{\infty}\left(1-\frac{4 \chi^{2}}{(2 n+1)^{2} \pi^{2}}\right)
\end{align*}
$$

where $X=z^{\prime} h$, we obtain

$$
\begin{align*}
& M_{1}\left(z^{\prime}\right)=z^{\prime} C_{0} \sqrt{\frac{z^{\prime}-i a_{1}}{z^{\prime}-i b_{0}}} \sqrt{\frac{z^{\prime}+i a_{1}}{z^{\prime}+i b_{v}}} \sqrt{\frac{z^{\prime}-i a_{2}}{z^{\prime}-i b_{1}}} \cdots \tag{1.29}\\
& M_{2}\left(z^{\prime}\right)=z^{\prime} C_{0} \sqrt{\frac{z^{\prime}-a_{1}}{z^{\prime}-b_{0}}} \sqrt{\frac{z^{\prime}+a_{1}}{z^{\prime}+b_{0}}} \sqrt{\frac{z^{\prime}-a_{2}}{z^{\prime}-b_{1}}} \cdots
\end{align*}
$$

where $C_{0}, b_{0}, a_{1}, b_{1}, a_{2}$ are real constants, and $a_{n+1}=(n+1) \pi / h$, $b_{n}=(2 n+1) \pi / 2 h$. We see from this that the function $M_{1}\left(z^{\prime}\right)$ has an infinite number of branch points on the imaginary axis, and $M_{2}\left(z^{\prime}\right)$ has similar points, except that they appear on the real axis.

Plane z^{\prime} will be cut as shown in Fig. 2. After that, the functions $M_{1}\left(z^{\prime}\right)$ and $M_{2}\left(z^{\prime}\right)$ will be single-valued inside the corresponding contour in the multiply-connected region. Let

$$
M_{1}^{*}\left(z^{\prime}\right)=M_{1}\left(z^{\prime}\right) / z^{\prime}
$$

The values of the arguments on the left and the right edge of the cuts along the positive imaginary axis will be respectively

$$
\begin{aligned}
& \arg M_{1}{ }^{*}\left(z^{\prime}\right)=\frac{1}{2}\left[-\frac{1}{2} \pi-\left(\frac{1}{2} \pi-2 \pi\right)+0+0+\cdots\right]=\frac{1}{2} \pi \\
& \arg M_{1}{ }^{*}\left(z^{\prime}\right)=\frac{1}{2}\left(-\frac{1}{2} \pi-\frac{1}{2} \pi+0+0+\cdots\right)=-\frac{1}{2} \pi
\end{aligned}
$$

Therefore the function $M_{1}{ }^{*}\left(z^{\prime}\right)$ along the left and the right edges has the multipliers $+i$ and $-i$, respectively, in front of the root. In an analogous manner we determine arg $M_{1}{ }^{*}\left(z^{\prime}\right)$ along the corresponding edges of the segments located along the negative imaginary axis (Fig. 2).

Note that during the integrations along the contours (1) and (3) the paths followed the directions shown by the arrows in Fig. 2, and along contour (2) the integration proceeded clockwise. By applying the residue theorem we obtain

$$
\begin{align*}
& \oint_{(1) I} F_{1}\left(z^{\prime}\right) d z^{\prime}=2 R_{2}^{*}+i N_{1}+i N_{2}+ \tag{1.30}\\
& \quad+\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C^{\prime}}^{r(n)} F_{1}\left(z^{\prime}\right) d z^{\prime}=-i N^{*} e^{-\lambda t}+f_{1}^{*}(\alpha, Y, t) \\
& \oint_{(2) I^{\prime}} F_{2}\left(z^{\prime}\right) d z^{\prime}=2 N_{1}+2 N_{2}+H_{1}+ \\
& \quad+\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}}^{0} F_{2}\left(z^{\prime}\right) d z^{\prime}=N^{*}\left(e^{\lambda t}-e^{-\lambda t}\right)+f_{2}^{*}(\alpha, Y, t) \\
& \oint_{(3) I^{\prime}} F_{3}\left(z^{\prime}\right) d z^{\prime}=-i 2 R_{2}^{*}+H_{2}+ \\
& \quad+\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}} F_{3}\left(z^{\prime}\right) d z^{\prime}+f_{3}^{*}(\alpha, Y, t)=-N^{*} e^{-\lambda t}
\end{align*}
$$

Here

$$
\begin{aligned}
& N_{1}=\sum_{n=0}^{\infty} \int_{a_{n+1}}^{b_{n}} \frac{\cos k(Y+h) \exp \left(i M_{2} t\right) d k}{\left(\alpha^{2}-k^{2}\right)\left(\lambda^{2} \cos k h-k g \sin k h\right) \cos k h} \\
& N_{2}=\sum_{n=0}^{\infty} \int_{b_{n}}^{a_{n}+1} \frac{\cos k(Y+h) \exp \left(-i M_{2} t\right) d k}{\left(\alpha^{2}-k^{2}\right)\left(\lambda^{2} \cos k h-k g \sin k h\right) \cos k h}
\end{aligned}
$$

$$
N^{*}=\frac{2 \pi \gamma h^{2} \cosh [\gamma(Y+h) / h]}{g\left(\alpha^{2} h^{2}+\gamma^{2}\right) \Gamma(\gamma, \mu) \cosh \gamma^{2} \gamma} ; \quad M_{2}=\sqrt{k g \tan k h}, \quad \Gamma(\gamma, \mu)=\gamma^{2}-(1+\mu) \mu
$$

where $f_{\nu}^{*}(a, Y, t)$ are some functions of a, Y and t, where $\nu=1,2,3$.
Of course, all integrals along the large circles are equal to zero when their radii tend to ∞. Let us study the integrals under the summation signs in Formulas (1.30) and integrate them along the small circles $C_{r(n)}$ and $C_{r(n)^{\prime \prime}}{ }^{\prime}$

As the radii of the circles tend to zero we have

$$
\begin{gather*}
\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}} F_{I}\left(z^{\prime}\right) d z^{\prime} \tag{1.31}\\
=-i \sum_{n=0}^{\infty} C_{n} \lim _{r \rightarrow 0} \int_{\pi / 2}^{-3 \pi / 2} \exp \left[-\frac{C_{n}^{(1)}}{\sqrt{r}}(1-i) \exp \left(\frac{-i \beta}{2}\right)\right] d \beta \\
=-i 2 \sum_{n=0}^{\infty} C_{n} \lim _{r \rightarrow 0} \int_{\pi / 2}^{-\pi / 2} \exp \left[-\frac{C_{n}^{(2)}}{\sqrt{r}}(\cos x-i \sin x)\right] d x \rightarrow 0
\end{gather*}
$$

Here $C_{n}, C_{n}{ }^{(1)}$, and $C_{n}{ }^{(2)}$ are some positive constants, β and κ are arguments. In the same manner one can prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}} F_{2}\left(z^{\prime}\right) d z^{\prime} \rightarrow 0, \quad \sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}^{\prime \prime}}^{0} F_{3}\left(z^{\prime}\right) d z^{\prime} \rightarrow 0 \tag{1.32}
\end{equation*}
$$

Note that

$$
\begin{align*}
& H_{1}= \sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}^{\prime \prime}} F_{2}\left(z^{\prime}\right) d z^{\prime}=i 2 \sum_{n=0}^{\infty} C_{n} \lim _{r \rightarrow 0} \int_{\pi / 2}^{-\pi / 2} \exp \left[\frac{C_{n}^{(1)}}{\sqrt{r}}(\cos x-i \sin x)\right] d x \tag{1.33}\\
& H_{2}=\sum_{n=0}^{\infty} \lim _{r \rightarrow 0} \int_{C_{r(n)}} F_{3}\left(z^{\prime}\right) d z^{\prime}= \\
&=-i \sum_{n=0}^{\infty} C_{n} \lim _{r \rightarrow 0} \int_{2 \pi}^{0} \exp \left[i \frac{C_{n}^{(1)}}{\sqrt{r}} \exp \left(\frac{-i \beta}{2}\right)\right] d \beta=-H_{1}
\end{align*}
$$

From the system of equations (1.30) and the relations (1.31), (1.32), and (1.33) we find the required integral

$$
\begin{equation*}
R_{2}^{*}=-i N^{*} e^{\lambda . t} / 2+f^{*}(\alpha, Y, t) \tag{1.34}
\end{equation*}
$$

After substituting (1.34) and (1.24) into Formula (1.19) and carrying out the R_{2}-integration with respect to a, we obtain

$$
\begin{aligned}
& S_{1}=i \frac{\pi^{3}}{2} \lambda h e^{-\gamma} V_{1} \frac{(1-\cosh \gamma) \sinh \lambda t}{g \Gamma(\gamma, \mu)_{\cosh ^{2} \gamma} \cosh \left[\frac{\gamma}{h}(Y+h)\right]+e^{-\lambda . t} \int_{0}^{\infty} f_{1}(\alpha, Y) d \alpha+} \\
+ & \int_{0}^{\infty} f_{2}(\alpha, Y, t) d \alpha+\frac{\pi^{2}}{2} \lambda e^{-\lambda,} V_{1} \int_{0}^{\infty} \sum_{m=1,3}^{\infty} \frac{\cos C(Y+h) \cos \alpha h}{g C\left(C^{2}-\alpha^{2}\right) h}(1-\cos \alpha h) d \alpha(1.35)
\end{aligned}
$$

In the same manner we find

$$
\begin{align*}
& S_{2}= i \frac{\pi^{3}}{2} \lambda h V_{1}^{\cosh [\gamma(Y+h) / h]} \tag{1.36}\\
& g \Gamma(\gamma, \mu) \cosh \gamma \\
& S_{3}=-i \frac{\pi^{3}}{2} \gamma e^{-\gamma} V_{1} \frac{(1-\cosh \gamma) \cosh \lambda t}{g \Gamma(\gamma, \mu) \cosh h^{2} \gamma} \sinh \left[\frac{\gamma}{h}(Y+h)\right]+e^{-\lambda t} \int_{0}^{\infty} f_{1}(\alpha, Y) d \alpha+\int_{0}^{\infty} f_{2}(\alpha, Y, t) d \alpha \\
&+\int_{0}^{\infty} f_{4}(\alpha, Y, t) d \alpha+\frac{\pi^{2}}{2} e^{-\lambda t} V_{1} \int_{0}^{\infty} f_{3}(\alpha, Y) d \alpha+ \\
& S_{4=1,3}^{\infty} \frac{\sin C(Y+h) \cos \alpha h}{g h\left(\alpha^{2}-C^{2}\right)}(1-\cos \alpha h) d \alpha \\
&=-i \frac{\pi^{3}}{2} \gamma V_{1}-\frac{\sinh [\gamma(Y+h) / h]}{g \Gamma(\gamma, \mu) \cosh \gamma}\left(1-e^{-\gamma}\right) \cosh \lambda t+e^{-\lambda, t} \int_{0}^{\infty} f_{3}(\alpha, Y) d \alpha+\int_{0}^{\infty} f_{4}(\alpha, Y, t) d \alpha
\end{align*}
$$

After substituting Formulas (1.35) and (1.36) into (1.17) and evaluating the remaining integrals, we obtain finally

$$
\begin{gather*}
\frac{\partial \varphi}{\partial t}=i 4 \mu \lambda h V_{1} \frac{\cosh [\gamma(Y+h)}{\gamma \Gamma(\gamma, \mu) \cosh \gamma} \frac{/ h]}{\sinh } \lambda t-i 4 \mu e^{-\lambda t} V_{1} V_{2}^{\sinh [\gamma(Y+h) / h]} \frac{\Gamma(\gamma, \mu) \cosh \gamma}{\cosh \lambda t-} \\
-\lambda V_{2} Y e^{-\lambda t}-\left(V_{1}^{2}+V_{2}^{2}\right) e^{-2 \lambda t}+U_{2} g\left(e^{-\lambda t}-1\right) \tag{1.37}
\end{gather*}
$$

for $t>0, Y<0$, and $x=U_{1}(t)$. In the same manner we find for $t>0$, $Y<0$, and $x=U_{1}(t)$

$$
\begin{equation*}
\frac{\partial \varphi}{\partial y}=i 4 \mu V_{1}^{\sinh [\gamma(Y+h) / h]} \frac{\Gamma(\gamma, \mu) \operatorname{cosb} \gamma}{\cosh \lambda t}+V_{2} e^{-\lambda t} \tag{1.38}
\end{equation*}
$$

It is easily shown that

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=V_{1} e^{-\lambda t} \tag{1.39}
\end{equation*}
$$

In order to determine the dynamic fluid pressure at $t=0$, we turn to Formula (1.17). After integration with respect to ω and setting $t=0$, we obtain

$$
\begin{gathered}
\frac{\partial \varphi}{\partial t}=\frac{4}{\pi^{2}} \lambda V_{1} \int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h}{k\left(\alpha^{2}+k^{2}\right) \cosh k h} \sinh k Y d \alpha d k+ \\
-+\frac{4}{\pi^{2}} V_{1} V_{2} \int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h}{\left(\alpha^{2}+k^{2}\right) \cosh k h} \cosh k Y d \alpha d k- \\
-\frac{4 g}{\pi^{2}} V_{1} V_{2} \int_{0}^{\infty} \frac{(1-\cos \alpha h) k \sinh k(Y+h)}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh h h+\lambda^{2} \cosh / h\right)}\left(\frac{\cos \alpha h}{\cosh / t h}-1\right) d \alpha d k-\lambda V_{2} Y-V_{2}{ }^{2}-V_{1}{ }^{2}-
\end{gathered}
$$

$$
\begin{equation*}
-\frac{2}{\pi} V_{1} \int_{0}^{\infty} \frac{(1-\cos \alpha h)}{\alpha^{2}}\left(\lambda \sin \alpha Y+V_{2} \alpha \cos \alpha Y\right) d \alpha \tag{1.40}
\end{equation*}
$$

At first we carry out the double integration in (1.40) with respect to a in the first integral, and in the second and third double integrals we integrate first with respect to k. We find at $t=0, y=0$, and $x=0$ that

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}=-\frac{2 \lambda}{h} V_{1} \sum_{m=1,3}^{\infty} \frac{\sin C Y}{C^{2}}-i 2 \mu V_{1} V_{2}^{\sinh [\gamma(Y+h) / h]} \frac{\Gamma(\gamma, \mu) \cosh \gamma}{}-\lambda V_{2} Y-V_{1}^{2}-V_{2}^{2} \tag{1.41}
\end{equation*}
$$

Note that in the calculation of $\partial \phi / \partial y$ we integrate all double integrals with respect to k first. Integration yields

$$
\begin{equation*}
\frac{\partial \varphi}{\partial y}=i 2 \mu V_{1} \frac{\sinh [\gamma(Y+h) / h]}{\Gamma(\gamma, \mu)_{\cosh \gamma}}+V_{2} \quad\left(\frac{\partial \varphi}{\partial x}=V_{1}\right) \tag{1.42}
\end{equation*}
$$

2) Now let us study the dynamic pressure on the dam caused by its impulsive action on the liquid. Let us assume that

$$
\begin{equation*}
V(t)=V_{0} e^{-\xi t} \tag{1.43}
\end{equation*}
$$

Thus, actually, after the change of λ to ξ Formulas (1.12) to (1.19) hold also for this case. Note that in the evaluation of the integrals

Fig. 4.

Fig. 5.
S_{1}, S_{2}, S_{3} and S_{4} the two cases are different from each other, since in
this case the equation $k g \sinh (k h)+\xi^{2} \cosh (k h)=0$ has an infinite number of roots $\gamma_{n}{ }^{\prime}$, where $n=1,2,3, \ldots$, which lie on the imaginary axis, as shown in Fig. 4.

To calculate $R_{2}{ }^{*}$ we shall choose the same auxiliary functions and integration contours, only this time in Expressions (1.25) and (1.26) λ will be replaced by ξ. Contour (1) lies in plane 2 (Fig. 4), and contours (2) and (3) lie in plane 2^{\prime}; which is related to plane 2 by the mapping of ($x^{\prime} ; y^{\prime}$) onto ($-y^{\prime} ; x^{\prime}$) and a 90° clockwise rotation. Note these properties of the integrands, and after integration we have

$$
\begin{gather*}
\oint_{(1) 2} F_{1}\left(z^{\prime}\right) d z^{\prime}=2 R_{2}{ }^{*}+i N_{1}+i N_{2}-L^{*} e^{-\xi t}+f_{1}^{*}(\alpha, Y, t)=0 \tag{1.44}\\
\oint_{(2) 2^{\prime}} F_{2}\left(z^{\prime}\right) d z^{\prime}=2 N_{1}+2 N_{2}+H_{1}-i L^{*}\left(e^{\xi t}-e^{-\xi t}\right)+f_{2}^{*}(\alpha, Y, t)=0 \\
\oint_{(3) 2^{\prime}} F_{3}\left(z^{\prime}\right) d z^{\prime}=-i 2 R_{2}{ }^{*}+H_{2}+i L^{*}\left(e^{\xi t}+e^{-\xi t}\right)+f_{3}{ }^{*}(\alpha, Y, t)=0
\end{gather*}
$$

where N_{1} and N_{2} are the same symbols as in (1.30) except that λ is replaced by ξ

$$
\begin{array}{r}
L^{*}=2 \pi \sum_{n=1}^{\infty} \frac{\gamma_{n h^{2}}^{\prime} \cos \left[\gamma_{n}^{\prime}(Y+h) / h\right]}{g\left(\alpha^{2} h^{2}-\gamma_{n}^{\prime}{ }^{2}\right) \Gamma\left(\gamma_{n}^{\prime}, \sigma\right) \cos ^{2} \gamma_{n}^{\prime}} \\
\left(\Gamma\left(\gamma_{n}^{\prime}, \sigma\right)-\Upsilon_{n}^{2}+(1+\sigma h) h \sigma, \sigma=\frac{\xi^{2}}{g}\right)
\end{array}
$$

which is obtained by means of integration over the small circles with centers at the points $\gamma_{n}{ }^{\prime}$, whose radii tend to zero.
R_{2}^{*} is found from the system of equation (1.44). After a series of appropriate integrations we obtain

$$
\begin{align*}
& \frac{\partial \varphi}{\partial t}=2 \xi \sigma h^{2} V_{1} \sum_{n=1}^{\infty} \frac{\cos \left[\gamma_{n}^{\prime}(Y+h) / h\right]}{\gamma_{n}^{\prime}} \overline{\Gamma\left(\gamma_{n}^{\prime}, \sigma\right) \cos \gamma_{n}^{\prime}} e^{-\frac{5}{\Sigma} t}-2 \sigma h V_{1} V_{2} \sum_{n=1}^{\infty} \frac{\sin \left[\gamma_{n}^{\prime}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}^{\prime}, \sigma\right) \cos \gamma_{n}^{\prime}} e^{-2 \xi t}- \\
& -\xi V^{\prime}{ }_{2} Y e^{-\xi t}-\left(V_{2}{ }^{2}+V_{2}{ }^{2}\right) e^{-2 \xi t}-U_{2} g\left(1-e^{-\xi t}\right) \tag{1.45}\\
& \frac{\partial \varphi}{\partial y}=2 \sigma h V_{1} \sum_{n=1}^{\infty} \frac{\sin \left[\Upsilon_{n}{ }^{\prime}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}{ }^{\prime}, \sigma\right) \cos \gamma_{n}^{\prime}} e^{-\xi t}+V_{2} e^{-\xi t}, \quad \frac{\partial \varphi}{\partial x}=V_{1} e^{-\xi t} \\
& \text { for } t>0, y<U_{2}(t), x=U_{1}(t) \text {. } \\
& \text { For the time } t=0 \text { we have for } y<0, x=0
\end{align*}
$$

$$
\begin{gather*}
\frac{\partial \varphi}{\partial t}=-\frac{2 \xi}{h} V_{1} \sum_{m=1,3}^{\infty} \frac{\sin C Y}{C^{2}}-2 \sigma h V_{1} V_{2} \sum_{n=1}^{\infty} \frac{\sin \left[\gamma_{n}^{\prime}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}^{\prime}, \sigma\right) \cos \gamma_{n}^{\prime}}-\xi V_{2} Y-V_{1}{ }^{2}-V_{2}{ }^{2} \\
\frac{\partial \varphi}{\partial y}=2 \sigma h V_{1} \sum_{n=1}^{\infty} \frac{\sin \left[\gamma_{n}^{\prime}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}^{\prime}, \sigma\right) \cos \gamma_{n}^{\prime}}+V_{2}, \quad \frac{\partial \varphi}{\partial x}=V_{1} \tag{1.46}
\end{gather*}
$$

2. Now we shall study the problem of the dynamic fluid pressure acting on a dam, which depends on the initial conditions

$$
\begin{equation*}
\varphi(x, y, 0)=0, \quad \frac{\partial \varphi(x, 0,0)}{\partial t}=0 \tag{2.1}
\end{equation*}
$$

and the boundary conditions

$$
\begin{array}{lll}
\frac{\partial \varphi}{\partial x}=V_{1} \sin \omega t & \left(V_{1}=V_{0} \cos \vartheta\right) & \text { at } x=-U_{1} \cos \omega t
\end{array} \quad\left(U_{1}=U_{0} \cos \vartheta\right)
$$

Here V_{0} and U_{0} are the amplitudes of the velocity and the displacement of the vibrating earth surface.

Let us choose the following form of the velocity potential $\phi(x, y, t)$ which satisfies $\Delta \phi=0$:

$$
\begin{gathered}
\varphi(x, y, t)=\sin \omega t\left\{\int_{0}^{\infty}[B(k) \cosh k(Y+h)+C(k) \sinh k Y] \cos k X d k+\right. \\
\left.+\int_{0}^{\infty} A(\alpha) \sin \alpha Y e^{-\alpha X} d \alpha\right\}+\int_{0}^{\infty} D(k) \cosh k(Y+h) \cos k X \sin M t d k\binom{X=x+U_{1} \cos \omega t}{Y=y+U_{2} \cos \omega t}
\end{gathered}
$$

Here the functions $A(a), B(k), C(k)$ and $D(k)$ are arbitrary.
With the aid of the Fourier integral, using conditions (2.1) to (2.4), we find

$$
\begin{gather*}
A(\alpha)=\frac{2 V_{1}}{\pi} \frac{(1-\cos \alpha h)}{\alpha^{2}}, \quad D(k)=-\frac{\omega}{M} B(k), \quad M=\sqrt{k g \tanh k h} \\
C(k)=\frac{\delta(k) V_{2}}{k \cosh k h}-\frac{4 V_{1}}{\pi^{2}} \int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h}{\left(\alpha^{2}+k^{2}\right) k \cosh k h} d \alpha \tag{2.6}
\end{gather*}
$$

$$
\left(k g \sinh k h-\omega^{2} \cosh k h\right) B(k)+k g C(k)=-\frac{2 g}{\pi} \int_{0}^{\infty} \frac{A(\alpha) \alpha^{2}}{\alpha^{2}+k^{2}} d \alpha
$$

Differentation of $\phi(x, y, t)$ with respect to t for $x=-U_{1} \cos \omega t$ yields

$$
\begin{gather*}
\frac{\partial \varphi}{\partial t}=\frac{4 V_{1}}{\pi^{2}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{(1-\cos \alpha h) \cos \alpha h}{\left(\alpha^{2}+k^{2}\right) k \cosh h h}\left(V_{2} k \cosh k Y \sin ^{2} \omega t-\omega \cos \omega t \sinh k Y\right) d \alpha d k+ \\
+\frac{4 V_{1}}{\pi^{2}} g\left[\omega\left(S_{5}-S_{6}\right)-V_{2}\left(S_{7}-S_{8}\right)\right]+U_{2 g}(\cos \omega t-1)+\omega V_{2} Y \cos \omega t- \\
-V_{2}{ }^{2} \sin ^{2} \omega t+\frac{2 V_{1}}{\pi} \int_{0}^{\infty} \frac{(1-\cos \alpha h)}{\alpha^{2}}[\omega \cos \omega t \sin \alpha Y+ \tag{2.7}\\
\left.\quad+\alpha \sin ^{2} \omega t\left(V_{1} \sin \alpha Y-V_{2} \cos \alpha Y\right)\right] d \alpha
\end{gather*}
$$

Here

$$
\begin{aligned}
& S_{5}=\cos \omega t \iint_{0}^{\infty} \Omega(\alpha, k) \cosh k(Y+h) d \alpha d k \\
& S_{6}=\int_{0}^{\infty} \Omega(\alpha, k) \cosh k(Y+h) \cos M t d \alpha d k \\
& S_{7}=\sin ^{2} \omega t \int_{0}^{\infty} \int_{0}^{\infty} \Omega(\alpha, k) k \sinh k(Y+h) d \alpha d k \\
& S_{8}=\omega \sin \omega t \int_{0}^{\infty} \frac{\sin M t}{M} \Omega(\alpha, k) k \sinh k(Y+h) d \alpha d k \\
& \Omega(\alpha, k)=(1-\cos \alpha h)(\cos \alpha h-\cosh k h) /\left(\alpha^{2}+k^{2}\right) \times \\
& \quad \times\left(k g \sinh k / h-\omega^{2} \cosh k h\right) \cosh k h
\end{aligned}
$$

It should be noted that in the computation of the integrals S_{6} and S_{8} we first integrate with respect to k, and all remaining double integrals at first with respect to a. In the process of computing S_{6} we analyze the integral

$$
\begin{equation*}
T^{*}=\int_{0}^{\infty} \frac{\cosh k(Y+h) \cos M t d k}{\left(\alpha^{2}+k^{2}\right)\left(k g \sinh k h-\omega^{2} \cosh k h\right) \cosh k h} \tag{2.8}
\end{equation*}
$$

Let us take three auxiliary functions, similar to (1.26), when λ^{2} is replaced by $-\omega^{2}$. Here the equation $k g \sinh (k h)-\omega^{2} \cosh (k h)=0$ has an infinite number of imaginary roots γ_{n} which fall onto the segments show in Fig. 5, and two real roots.

We choose integration contours, as showi in Fig. 3, such that contour
(1) lies in plane 3 (Fig. 5), and contours (2) and (3) lie in plane 3^{\prime}, which is obtained from plane 3 by the mapping of $\left(x^{\prime}, y^{\prime}\right)$ onto $\left(-y^{\prime}, x^{\prime}\right)$ and a 90° clockwise rotation. By the theorem of residues we have

$$
\begin{align*}
& \oint_{(1) 3} F_{1}\left(z^{\prime}\right) d z^{\prime}=2 T^{*}-i N_{3}-i N_{4}+K_{1}{ }^{*}-K_{2}^{*}+f_{1}^{*}(\alpha, Y, t)=0 \\
& \oint_{(2) 3^{\prime}} F_{2}\left(z^{\prime}\right) d z^{\prime}=2 N_{3}+2 N_{4}+i 2 K_{1}^{*}+H_{1}+f_{2}^{*}(\alpha, Y, t)=0 \tag{2.9}\\
& \oint_{(3) 3^{\prime}} F_{3}\left(z^{\prime}\right) d z^{\prime}=i 2 T^{*}-i 2 K_{2}^{*}-i K_{1}^{*}+H_{2}+f_{3}^{*}(\alpha, Y, t)=0
\end{align*}
$$

where $N_{3}=-N_{1}, N_{4}=-N_{2}$, but instead of λ^{2} we have $-\omega^{2}$,

$$
\begin{gathered}
K_{1}^{*}-2 \pi \gamma_{s} h^{2} \frac{\cosh \left[\gamma_{s}(Y+h) / h\right] \sin \omega t}{g\left(\alpha^{2} h^{2}+\gamma_{s}^{2}\right) \mathbb{T}\left(\gamma_{s}, Q\right) \cos \mathrm{K}^{2} \gamma_{s}} \\
K_{2}^{*}=\frac{2 \pi}{g} h^{2} \sum_{n=1}^{\infty} \frac{\gamma_{n} \cos \left[\gamma_{n}(Y+h) / h\right] \cos \omega t}{\left(\alpha^{2} h^{2}-\gamma_{n}^{2}\right) \Gamma\left(\gamma_{n}, Q\right) \cos ^{2} \gamma_{n}}
\end{gathered}
$$

$\Gamma\left(\gamma_{s}, Q\right)=\gamma_{s}{ }^{2}+(1-Q h) Q h, \quad \Gamma\left(\gamma_{n}, Q\right)=\Upsilon_{n}^{2}-(1-Q h) Q h, \quad Q=\omega^{2} / g$
where $K_{2}{ }^{*}$ is obtained by means of integration over the small semicircles whose centers lie at the points γ_{n}, and whose radii tend to zero (Fig.5).

From the system (2.9) we find

$$
\begin{equation*}
T^{*}=-\frac{\pi}{g} h^{2} \frac{\gamma^{\cosh }\left[\gamma_{s}(Y+h) / h\right] \sin \omega t}{\left(\alpha^{2} h^{2}+r_{s}^{2}\right) \Gamma\left(r_{s}, Q\right) \cosh ^{2} \gamma_{s}}+f^{*}(\alpha, Y, t) \tag{2.10}
\end{equation*}
$$

After substitution of (2.10) into the expression for S_{6} and integration with respect to a we obtain

$$
\begin{equation*}
S_{6}=-\frac{\pi^{2}}{2 g} Q h^{2} \frac{\cosh \left[\gamma_{s}(Y+h) / h\right]}{\gamma_{s} \Gamma\left(\gamma_{s}, Q\right) \cosh \gamma_{s}} \sin \omega t \tag{2.11}
\end{equation*}
$$

In a similar fashion we find

$$
\begin{equation*}
S_{8}=\frac{\pi^{2}}{4 g} Q h \frac{\sinh \left[\gamma_{s}(Y+h) / h\right]}{\Gamma\left(\gamma_{s}, Q\right) \operatorname{cosi} \gamma_{s}} \sin 2 \omega t \tag{2.12}
\end{equation*}
$$

After evaluating the remaining double integrals and substituting them into (2.7) we have for $t>0, Y<0, x=-U_{1} \cos \omega t$

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}=2 \omega Q h^{2} V_{1} \sum_{n=1}^{\infty} \frac{\cos \left[\gamma_{n}(Y+h) / h\right]}{\gamma_{n} \Gamma\left(\gamma_{n}, Q\right) \cos \gamma_{n}} \cos \omega t+ \tag{2.13}
\end{equation*}
$$

$$
\begin{aligned}
& +2 Q h V_{1} V_{2} \sum_{n=1}^{\infty} \frac{\sin \left[\gamma_{n}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}, Q\right) \cos \gamma_{n}} \sin ^{2} \omega t- \\
& -2\left(\omega Q h^{2} V_{1} \frac{\cosh \left[\gamma_{s}(Y+h) / h\right]}{\gamma_{s} \Gamma\left(\gamma_{s}, Q\right) \cosh \gamma_{s}} \sin \omega t-Q h V_{1} V_{2} \frac{\sinh \left[\gamma_{s}(Y+h) / h\right]}{\Gamma\left(\gamma_{s}, Q\right) \cosh \gamma_{s}} \sin 2 \omega t+\right. \\
& +\omega V_{2} Y \cos \omega t-U_{2} g(1-\cos \omega t)-\left(V_{1}{ }^{2}+V_{2}{ }^{2}\right) \sin ^{2} \omega t
\end{aligned}
$$

For $t>0, Y<0, x=-U_{1} \cos \omega t$ we find

$$
\begin{align*}
& \frac{\partial \Phi}{\partial y}=-2 Q h V_{1} \sum_{n=1}^{\infty} \frac{\sin \left[\gamma_{n}(Y+h) / h\right]}{\Gamma\left(\gamma_{n}, Q\right) \cos \gamma_{n}} \sin \omega t+ \tag{2.14}\\
& \quad+2 Q h V_{1}^{\prime} \frac{\left.\sin h \mid \gamma_{s}(Y+h) / h\right]}{\Gamma\left(\gamma_{s^{\prime}} Q\right) \cosh \gamma_{s}} \cos \omega t+V_{2} \sin \omega t
\end{align*}
$$

We know that $\partial \phi / \partial x=V_{1} \sin \omega t$. For $t=0, x=-U_{1}$ we have

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}=\frac{2 \omega}{h} V_{1} \sum_{m=1,3}^{\infty} \frac{\sin C Y}{C^{2}}+\omega V_{2} Y \tag{2.15}
\end{equation*}
$$

When we denote the dynamic fluid pressure by p^{*} and the fluid density by ρ we obtain the formula

$$
\frac{p^{*}}{\rho}=-\frac{\partial \varphi}{\partial t}-\frac{1}{2}\left[\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}\right]
$$

Let us use p^{*} in the form $p_{1}{ }^{*}+p_{2}{ }^{*}$, i.e. $p^{*}=p_{1}{ }^{*}+p_{2}{ }^{*}$, where $p_{1}{ }^{*}$ denotes the set of components which does not contain the factor V_{2}, and $p_{2}{ }^{*}$ represents the remaining components. Formulas (1.37) and (1.38) show that $p_{1}{ }^{*}$ grows rapidly when ξ and η grow and $\xi \rightarrow \eta$, because then in $\cosh (y)=\cosh (p) \cos q-i \sin (q) \sinh (p)$ the value of $p \rightarrow 0$ and $q \rightarrow 1 / 2 \pi$.

It follows from Formula (1.45) that in this case $p_{1}{ }^{*}$ grows rapidly with a growing ξ, because then $\gamma_{n}{ }^{\prime} \rightarrow 1 / 2 \pi$. Then the pressure reaches its maximum value at the time when the moving liquid meets with the instantly stationary dam. It can be seen from Formulas (2.13) and (2.14) that in this case $p_{1}{ }^{*}$ grows rapidly with an increase of ω, because then $\gamma_{n} \rightarrow$ $1 / 2 \pi$.

It follows from the results obtained that vertical oscillations of the earth surface exhibit a significant influence on the loading of the darn during a destructive as well as during a strong earthquake. Actually, there may be some relations $U_{2} \omega^{2} \geqslant g, U_{2} \xi^{2} \geqslant g, U_{2} \eta^{2} \geqslant g$ or $U_{2} \xi \eta \geqslant g$,
and consequently $p_{2}{ }^{*}$ can be larger than the static pressure $p^{0}=\rho \mathrm{g} Y$. The pressure $p_{1}{ }^{*}$ can also exceed the value of p° for some given η, ξ, ω. The formulas obtained above are useful for the construction of individual graphs of the distribution of the dynamic fluid pressure along a dam.

The problem of the dynamic fluid pressure on a dam which is caused by its vibrations according to $V=V_{0} \cos \omega t$ was discussed in [4].

BIBLIOGRAPHY

1. Leibenzon, L.S., O natural'nykh periodakh kolebanii plotiny, podpiraiushchei reku (On natural vibration periods of a dam retaining a river). Uch. zap. MGU No. 2, 1935.
2. Urazbaev, M.T., Seismostoikost' gidrouprugikh sistem (Earthquakeresistant hydro-elastic systems). Stroitel'naia mekhanika i raschet sooruzhenii (Structural Mechanics and Construction Analysis), No.5, 1959.
3. Napetvaridze, Sh. G., Gidrodinamicheskoe davlenie pri seismicheskom vozdeistvii (Hydrodynamic pressure during seismic action). Tr. Inta stroitel'stva $A N$ Gruz $S S R$ Tbilisi, 1955.
4. Chen' Chzhen'-chen, 0 dinamicheskom davlenii zhidkosti na plotinu pri zemletriasenii (The effect of dynamic fluid pressure on a dam during earthquakes). PMM Vol. 25, No. 1, 1961.
5. Stretenski1, L.N., O napravlennom izluchenii voln iz oblasti, podverzhennoi vneshnemu davleniiu (On directional wave emission from a region subject to internal pressure). PMM Vol. 20, No. 3, 1956.
6. Voit, S.S., Volny na poverkhnosti zhidkosti, voznikaiushchie ot peremeshchaiushcheisia periodicheskoi sistemy davlenii (Waves on the surface of a liquid caused by a moving periodic pressure system). PMM Vol. 21, No. 1, 1957.
7. Cherkasov, L.V., 0 volnakh na poverkhnosti zhidkosti (On waves on the surface of a liquid). Izv. Akad. Nauk SSSR, OTN, ser. mekh. i mash. No. 2, 1959.
